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Abstract

Use of subsurface drip irrigation (SDI) has progressed from being a novelty employed by

researchers to an accepted method of irrigation of both perennial and annual crops. This paper

reviews the SDI research conducted by scientists at the Water Management Research Laboratory

over a period of 15 years. Data are presented for irrigation and fertilization management on tomato,

cotton, sweet corn, alfalfa, and cantaloupe for both plot and field applications. Results from these

studies demonstrated significant yield and water use efficiency increases in all crops. Use of high

frequency irrigation resulted in reduced deep percolation and increased use of water from shallow

ground water when crops were grown in high water table areas. Uniformity studies demonstrated

that after 9 years of operation SDI uniformity was as good as at the time of installation if

management procedures were followed to prevent root intrusion. Published by Elsevier Science

B.V.
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1. Introduction

Microirrigation has developed rapidly since the early 1960s with the advent of the

modern plastics industry. In the United States from 1981 to 1995 the area irrigated by

microirrigation has increased from 185,000 ha to over 1,000,000 ha which represents 5%

of the total irrigated area. There are approximately 626,000 ha of microirrigation in

California with roughly 99,000 ha of the total being in subsurface drip irrigation (SDI).

Based on current trends of adoption there should be a total of 3 million ha of

microirrigated land in the world by the year 2000 representing only 2% of the total

irrigated land in the world.

Some advantages of microirrigation include improved water and nutrient management,

potential for improved yields and crop quality, greater control on applied water resulting

in less water and nutrient loss through deep percolation, and reduced total water

requirements. Phene et al. (1987) demonstrated significant yield increases in tomatoes

with the use of high frequency SDI and precise fertility management. In a recent study

Hutmacher et al. (1996) demonstrated yield increases in alfalfa production using SDI

systems buried at depths of 0.7 m. Cotton yields have also been improved using SDI

(Smith et al., 1991; Ayars et al., 1998). Water use efficiency has been significantly

improved through the use of SDI (Phene et al., 1986b).

Most microirrigation has been on permanent plantings such as trees and vines with

applications to field crops being limited. Application of microirrigation technology to

field crops is difficult because of the potential for surface-installed drip tubing interfering

with cultural operations. To alleviate this difficulty, the use of SDI has been proposed and

tested. The design of the SDI system is the same as for surface systems except the tubing

is buried. Burying the tubing adds additional initial cost to the system but eliminates the

need to install and remove tubing at the beginning and end of each growing season. Root

intrusion, distribution uniformity, tubing damage from equipment and burrowing animals

are all concerns with the operation of a SDI system, since the system is no longer in view.

If the advantages of microirrigation can be realized with a subsurface system and the

concerns be alleviated, there is tremendous potential for the adoption of this technology

on field crops as well as on permanent plantings.

The objectives of this paper are to review the 15 years of research by scientists at the

Water Management Research Laboratory related to application of SDI in production of

field crops, to summarize the results, and to identify the successes, the limitations, and the

areas requiring further research.

2. Plot studies

Plot studies were conducted at two locations in the San Joaquin Valley (SJV) and one

location in the Imperial Valley of California. The SJV studies were on the research farm

at California State University, Fresno (CSUF) and at the University of California West

Side Research and Extension Center, formerly the West Side Field Station (WSFS) and

the Imperial Valley studies were done at the USDA-ARS Irrigated Desert Research

Station in Brawley, CA. The following discussion is divided into the procedures and
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results at the CSUF location, the procedures and results at the WSFS and the studies at

the Imperial Valley location.

2.1. California State University, Fresno

2.1.1. Materials and methods

In 1981, a SDI system was installed in a replicated-plot experiment on the California

State University, Fresno (CSUF) farm in Fresno, CA. The irrigation tubing (Agrifim, in-

line emitters 2 Lph, spaced 61 cm) was shanked in at a depth of 0.46 and 1.52 m apart in

1.52 m beds which were shaped before planting. The soil is a Handford sandy loam

(Typic Xerorthents Entisols). Tomato seeds (Lycopersion esculentum Mill, UC82B) were

planted on day of year (DOY) 97 with a precision planter at a rate of 173,000 seeds per ha

and were germinated by sprinkler irrigation.

Irrigation control was performed semi-automatically with a commercial irrigation

controller (Motorola, Matarol 2000)2. Daily evaporation was measured directly with an

open evaporation pan and calculated indirectly using van Bavel's evapotranspiration (Et)

model with a Zo coefficient of 1.5. A crop coefficient proportional to the canopy spread

was used to adjust the Et values obtained with the pan and van Bavel's model. A

computerized on-site weather station was used to collect the hourly climatic data needed

for the Et calculations. Irrigation control was also performed automatically with

electronic soil moisture sensors and a computerized data acquisition system (Phene et al.,

1986b).

Fertilization consisted of a pre-plant broadcast application of 89.6 kg haÿ1 of nitrogen

followed by post-emergence daily application of urea-sulfur fertilizer through the trickle

irrigation system totaling 86.1 kg haÿ1. The plots of the furrow-irrigated treatment were

side dressed with 101 kg haÿ1 of N on 12 May 1981. Water applied, petiole N, P, K, and

plant height and spread were measured weekly.

The experiment consisted of eight treatments replicated three times. The plot size of

each replication was 92.9 m2 consisting of five 1.52 m wide beds, 12.2 m long. Plots in

Treatment 1 (furrow irrigation) were first irrigated on 14 May 1981. After the sixth true

leaf stage (May 27) differential irrigation began in plots in the seven subsurface drip

irrigation (SDI) treatments. Treatments 2, 3, and 4 were based on three daily Et rates

measured with open, screened, and 75% of the open class A evaporation pans,

respectively; Treatment 5 was based on potential Et calculated by van Bavel's equation.

Irrigation of plots in Treatments 6, 7 and 8 was initially based on soil moisture potential

of 15, 25, and 35 kPa, respectively, and as the season progressed, the soil moisture

threshold potentials for irrigation of Treatments 6, 7, and 8 were altered to more closely

meet plant soil water potential requirements by subsequently changing the soil moisture

thresholds to 20, 30, and 40 kPa first, then to 25, 35, and 45 kPa, and finally to 35, 45 and

55 kPa, respectively.

2 Equipment names are provided for the benefit of the reader and do not imply endorsement by USDA-ARS
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2.1.2. Results

The total water applied, marketable yields, soluble solids and water use efficiency are

summarized in Table 1. Marketable tomato yields are shown in Table 1 and in all cases,

the SDI plots produced more marketable tomatoes than the furrow-irrigated tomatoes.

Since the furrows were short and dammed at both ends, all water applied with furrow

irrigation infiltrated the plots and water was distributed uniformly along the beds,

probably at a relatively high application uniformity; hence the differences in growth and

yield must have resulted somewhat from the irrigation method and/or frequency.

Tomato quality was evaluated at harvest; fruit weight, alcohol insoluble solids, color,

and citric acid content were not affected by the irrigation methods or control treatments.

Table 1 shows that total soluble solids were significantly higher in Treatments 2 and 8

and significantly lower in Treatments 1 and 5; similarly, total solids were low in

Treatments 1 and 3 when compared to Treatment 8, but were not significantly different

from all other treatments. Specific gravity was only randomly affected.

Irrigation frequency varied with the treatments. Treatment 1 (furrow) was irrigated

approximately once every 6 days during peak Et periods, while Treatment 4 was irrigated

twice per day during the same period. Treatment 5 was irrigated 4 to 6 times a day while

Treatment 6 was irrigated 6 times a day. Treatments 7 and 8 were irrigated multiple times

per day but less than 6. Treatments 2 and 3 were irrigated at a frequency between once

every six days and twice per day. The average irrigation requirement of tomatoes in the

SJV is approximately 750±875 mm per year. With the exception of Treatments 4, 6 and 8

the remaining treatments received approximately this amount of water.

The average marketable yield of tomato in California is approximately 78 Mg haÿ1

which is exceeded in all treatments. The data show that yields were significantly better

with the SDI than the furrow. This might have been a result of the frequency or soil water

limitations created by the soil, i.e. poor infiltration in the furrow plots. Use of SDI

eliminated the effect of surface sealing which occurred in the furrow irrigated plots

during the irrigation season. The studies were moved from the CSUF site to the WSFS

site because tomatoes are not generally grown on the soil type located on CSUF.

2.2. West side field station

2.2.1. Materials and methods

At the University of California West Side Field Station a progression of experiments

using the SDI system evaluated first the water management and then the combined

management of water and fertilizer on processing tomatoes, sweet corn, cotton, and

cantaloupe. The crops were tomatoes in 1984, 1985, 1987, and 1990, cantaloupe in 1986,

cotton in 1988, and sweet corn in 1989. The basic configuration of the SDI system, which

did not change, will be described in the following sections. The individual experiments

will be summarized after the system description.

The experimental design used to construct the field installation was a randomized

block consisting of three treatments with four replications. This was modified in 1987 and

the blocks were split into two sub-plots. Each main plot was 91 m long and contained 10

beds spaced 1.63 m from center to center. Installation of irrigation supply line, centrifugal

pump, fertilizer injector (flow-sensing, proportioning pump) manifold, mainlines, and
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Table 1
Applied water, marketable yields, soluble solids, and water use efficiency for tomatoes grown at California State University, Fresno in 1981

Treatment

no.

Irrigation

method

Irrigation

control

method

Marketable

fruita

(Mg haÿ1)

Non-marketable

fruitd

(Mg haÿ1)

Total soluble

solidsb

(Mg haÿ1)

Total

solids

(Mg haÿ1)

Applied

water

(mm)

WUEc

(kg mÿ3)

1 Furrow Open Evap Pan 89.67 d 15.69 e 4.76 c 5.53b 627 14.3

2 SDI Open Evap Pan 132.26 a 38.11 a 5.24 ab 6.94 ab 648 20.4

3 SDI Screened Evap Pan 116.57 abc 33.63 ab 5.47 b 5.79 b 610 19.1

4 SDI Open Evap Pan (75%) 96.62 c 20.18 d 4.97 b 6.89 ab 488 19.8

5 SDI Van Bavel Et model 96.17 c 29.14 abcd 4.36 c 6.09 ab 620 15.5

6 SDI Soil Sensor@15/30 cb 125.54 ab 31.38 abc 5.55 b 6.53 ab 1029 12.2

7 SDI Soil Sensor@25/40 cb 112.09 abc 13.45 e 5.41b 6.19 ab 742 15.1

8 SDI Soil Sensor@35/55 cb 121.05 abc 22.42 bcd 6.96a 7.9 a 546 22.2

a Marketable fruit � red fruit � 2% green fruit � limited use fruit.
b Total soluble solids � Soluble solids (8Brix)* marketable yields (Mg haÿ1).
c Water use efficiency �Marketable fruit divided by applied water.
d Non-marketable fruit � 98% green fruit � blossom end rot sun scald � small. Column means followed by the same letters are not significantly different at the 5%
confidence level. (Duncan's test of separation of the means).
e After: Rose et al., 1982.
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plot manifolds was completed in the Spring of 1984. Filtration consisted of nested screens

with 180 mesh being the finest. The headworks of the irrigation system consisted of three

sections, each with computer-lysimeter feedback control backed up by a time clock,

electric valve, water meter, pressure regulator, and pressure gauge leading to 7.6 cm

diameter polyvinyl chloride (PVC) mainlines. At each plot a 2.5 cm diameter PVC

manifold (sub-main) was connected by a 5.1 cm diameter PVC riser assembly to the

mainlines. The riser assembly and plot manifold was made portable for the surface

microirrigation plots. The microirrigation laterals, consisting of in-line turbulent flow

emitters with a flow rate of 4 L hÿ1 spaced 0.91 m apart, were connected to the plot

manifolds. For the SDI plots, an end-of-line manifold connected the trickle laterals to a

single riser for flushing. The SDI laterals were installed in the center of each bed at a

depth of 0.45 m from the top of the bed. The laterals for the surface microirrigation

treatments were installed after planting and removed prior to harvest each year.

A large weighing lysimeter was used in a feedback mode to schedule irrigations

automatically in the SDI and surface microirrigation treatments after 1 mm of crop Et had

been measured by the lysimeter. An irrigation of 25 mm was applied to the low frequency

surface microirrigation treatment after 25 mm of Et was measured by the lysimeter. The

lysimeter was irrigated by SDI and corresponded to the high frequency SDI treatment.

Details of the lysimeter are available in Howell et al. (1985) and the lysimeter control

system in Phene et al. (1985).

2.2.1.1. Tomatoes. Processing tomatoes (cv UC82B) were grown in 1984, 1985, 1987,

and 1990 in a Panoche clay loam soil, (Typic Torriorthents). In 1984 and 1985, the

treatments were arranged in a randomized block design; in 1987 and 1990 a randomized

split plot design was used and in both cases, treatments were replicated four times. The

main treatments were high frequency SDI; high frequency surface drip irrigation (HFSD);

and low frequency surface drip irrigation (LFSD).

The beds were spaced 1.63 m apart from center to center, and the tomatoes were

planted at a density of approximately 150 000 seeds haÿ1. Each year, a soil fumigant

(Vapam, ICI Chemicals)3 was applied through the surface and subsurface microirrigation

systems at a rate of about 346 L haÿ1 with one 25 mm irrigation about 25 days prior to

planting in order to fumigate the soil and control weeds and pests. Yearly, N and P

fertilizer (11±48±0) was applied at the rate of 112 kg haÿ1 at planting, directly below the

seeds.

In 1984, the remaining fertilizer, 150 kg haÿ1 of N, (US 28, 28% N as urea and 8% as

H2SO4) were applied in daily increments through the irrigation system from May 19 to

June 28. Tomatoes were planted on March 7 and emerged March 22. In the field, starting

26 days before harvest, irrigation water was reduced every 7 days to 0.9, 0.8, 0.7, and 0.6

of the water applied to the lysimeter to improve the soluble solid content of the tomatoes.

Manual tomato harvest was from July 26 to August 1 and machine harvest was August 2.

Manual harvest each year consisted of harvesting all the tomatoes in 6.1 m long sections;

separating all tomatoes into four categories: (1) large red, (2) large green, (3) small, and

(4) culls (rotten, sunburned, cracked, etc); and weighing each category.

3 Product names are given for the benefit of the reader and do not imply endorsement by USDA-ARS.
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In 1985, the same pre-plant fertilization was used as in 1984 with the remaining N and

P being applied daily through the drip irrigation system as 12-12-0 (US 12-12-0, urea

and phosphoric acid) and 17-0-0 (Can 17, calcium ammonium nitrate). These solutions

were diluted to the specified daily rates and injected with a flow-sensing proportion-

ing pump. The N and P from US 12-12-0 were 68 kg haÿ1 each as urea and phosphoric

acid respectively, and Can 17 provided 192 kg haÿ1 as calcium nitrate (65%) and

ammonium nitrate (35%). Total amount of N and P applied through the microirriga-

tion system was 272 and 92 kg haÿ1, respectively. Tomatoes were planted in two rows

per bed on February 22 with emergence March 20. Sprinkler irrigation was used to

germinate and establish the tomato crop. In the field, irrigation water was reduced

gradually to one-half the amount applied to the lysimeter over a 24 day period before

harvest. Manual harvest of the tomatoes was from July 31 to August 2 and machine

harvest was August 5.

In 1987, fertilizers injected with each irrigation were potassium nitrate (KNO3) and

CAN 17. Both fertilizer types were used to manage N and K efficiently. Total N and K

injected were 301 and 381 kg haÿ1, respectively. Phosphoric acid was injected almost

continuously through the microirrigation system at a rate of 0 (P0), 15 (P1), and 30

(P2) mg P per kg of water for a total of 0, 67, and 134 kg haÿ1 P. Phosphorous, applied as

H3PO4, served a dual purpose of supplying P to the plant and maintaining the irrigation

system clean and free of roots. The tomatoes were planted on February 25, emerged on

March 20 and manually harvested on August 3±6.

The main irrigation treatments in the 1990 study were the same as in 1987. The sub-

treatments were nitrogen (N), nitrogen and phosphorus (N, P), and nitrogen, phosphorus,

and potassium (N, P, K) added daily by injection in the irrigation water. Fertilizer N, P,

and K were injected daily through the drip irrigation system starting on Day 115 for N

and Day 131 for P and K. Fertilizers used were calcium-ammonium nitrate (CAN 17),

phosphoric acid, and potassium nitrate. Fertilizer amounts applied were 448 kg haÿ1 N

for the N sub-treatments, 448 kg haÿ1 N and 101 kg haÿ1 P for the NP sub-treatments,

and 591 kg haÿ1 N, 101 kg haÿ1 P, and 442 kg haÿ1 K for the NPK sub-treatments. The

NPK sub-treatments received additional N because potassium nitrate was used as the

source of K. Tomatoes were planted DOY 78 at a density of approximately

125,000 plants haÿ1. Sprinkler irrigation was used on DOY 80±81 for germination. The

SDI system was used for germination starting on DOY 93 because of the lack of rainfall

and the availability of sprinkler irrigation. Irrigation treatments were begun on DOY 130.

2.2.1.2. Melons. Cantaloupes (var PMR 45) were planted in one row per bed on 14 May

1986, with a seeding rate of 2.2 kg haÿ1. After a full stand was achieved, the population

was thinned to approximately three to five plants mÿ2. Pre-plant fertilizer (11-48-0) was

applied at planting about 7 cm below the seeds at a rate of 16 kg haÿ1 N and 26 kg haÿ1 P.

Potassium nitrate was dissolved and injected with the microirrigation systems with total

application equaling 100 kg haÿ1 N and 280 K kg haÿ1 K.

Sprinkler irrigation was used to germinate and establish the crop. In June, bees were

placed along the edge of the experiment for pollination purposes. Irrigation was begun 26

days after emergence (DAE), was maintained through the harvest period, and was

terminated on DAE 96.

J.E. Ayars et al. / Agricultural Water Management 42 (1999) 1±27 7



Cantaloupes were manually sorted and graded to determine the number and types of

non-marketable fruits. Generally, quality is correlated with large, round, well-netted firm

melons showing high soluble solids content. Non-marketable yield was determined by

counting undesirable fruit with ground spot, growth crack, softness, and sunburn, and

rotten cantaloupes. Normally, labor cost, quantity, and price fluctuations on the

cantaloupe market prevent growers from harvesting melons more than three times. The

fruit was harvested manually every 3 days with a total of eight harvest from 6 August to

21 August. Each time, a row length of 18.75 m was harvested from three different beds

(6.25 m each) chosen at random in each plot.

Melons were harvested at the `full-slip' stage when a thin abscission crack encircled

the stem attachment at the fruit and the melon was easily detached. Melons were sorted

manually to remove non-marketable fruit and graded using five sizes designated as `23,

27, 36, 45, and 54' with a standard sizing template. These sizing numbers are the number

of melons that can be packed three layers deep in a commercial crate of 37±40 kg gross

weight. Two additional categories (12 and 18) were used because there were too many

melons in the `23' category to fit a normal distribution. After the eighth harvest, green

melons were counted in each treatment.

2.2.1.3. Sweet Corn. Hybrid sweet corn (Zea mays L. Cv. Supersweet Jubilee) was grown

during 1989 in a randomized split plot design with four replications. Main treatments

were SDI and surface drip with two irrigation frequencies (HFSD, LFSD). The sub-

treatments were phosphorus fertilization levels 0 (P0), 67 (P1), and 134 (P2) kg haÿ1 P

added by daily injection of phosphoric acid in the irrigation water. Corn was sown on

DOY 128; average plant density was approximately 72,000 plants haÿ1. Sweet corn was

harvested from two sections of each sub-treatment from DOY 209±212 (each section

consisted of 2 rows per 6.1 m bed). Total above-ground matter was harvested on DOY

207 and consisted of a 3 m section of bed (both rows) which was further sub-divided into

stalks, leaves, ears, and tassels. Dry matter harvests were made in two sub-sample

locations in the three field replications.

Sprinkler irrigation (121 mm) for germination and emergence was applied intermit-

tently from DOY 129 to 146. Drip irrigation was started on Day 153 and continued until

Day 220, 8 days after hand harvest but just prior to mechanical harvest. Both irrigation

treatments were irrigated automatically with 1 mm of water after 1 mm of crop

evapotranspiration had been measured with the weighing lysimeter. From DOY 153 to

181 all treatments received about 100 mm of irrigation water in excess of crop Et because

of concern (1) that the bed alignment problem of the SDI treatments could

disproportionately influence early growth in those treatments, (2) the soil profile was

extremely dry following cotton grown in 1988, and (3) negligible winter rainfall had

occurred.

Fertilizers N and K were injected daily through the drip irrigation system starting

on DOY 156. Nitrogen and potassium fertilizers injected were potassium nitrate

(KNO3) and calcium-ammonium nitrate. The total application of N and K from

KNO3 was 96 and 268 kg haÿ1, respectively. Additionally, the calcium-ammonium

nitrate provided 220 kg haÿ1 N. Total amounts of N and K injected were 316 and

268 kg haÿ1.

8 J.E. Ayars et al. / Agricultural Water Management 42 (1999) 1±27



2.2.2. Results

2.2.2.1. Tomato. The yields of large red tomatoes obtained in 1984±1985 are given in

Table 2 while the yields for 1987±1990 are given in Table 3. The data in Table 2 indicate

that the SDI treatment produced a significantly greater red tomato yield than either the

HFSD or LFSD when only P was injected with the irrigation water. Maximum yields

occurred with P fertilizer injected at a level of 67 kg haÿ1 (P1) (Table 3). The extremely

high tomato yields were a result of the precise application of irrigation and fertilizer.

Components of yield increase in the SDI treatment included somewhat larger fruit sizes

(not statistically significant) and a greater percentage of marketable tomatoes than in the

HFSD and LFSD treatments. Although different years and fertility treatments were

involved, we concluded that P injection through the drip lines caused a greater response

in the SDI than the other treatments. The rooting and uptake patterns of P (Phene et al.,

1986a) were deeper in the SDI treatment than in either the HFSD or LFSD. The

availability of residual soil P nearer the soil surface caused the SDI treatment to show P

deficiency in the petiole very early when P was not injected through the SDI drip line

(Phene et al., 1988a).

In 1990 the N fertilizer treatment had significantly fewer fruit per unit ground

area, smaller fruit, and lower total and red fruit yields than NP and NPK for the three

irrigation treatments. This was not related to plant population differences across

treatments (data not shown). Phosphorus application levels in supplemental P treat-

ments were different between the 1987 and 1990 experiments (67 and 134 kg haÿ1 P in

1987 versus 101 kg haÿ1 P in 1990). Despite these differences, fruit yields were

consistent in showing a positive response to supplemental rates P fertilization of 101 kg

haÿ1 or lower.

2.2.2.2. Cantaloupe. Table 4 shows that the number of ground-spotted and rotten

cantaloupes in the SDI treatment was significantly lower than in the HFSD and LFSD

treatments. This quality advantage in the SDI treatment is due to a dry soil surface

condition during the formation and maturation stages of the crop. Conversely, growth

cracks were more prevalent in the SDI treatment, probably because of the greater

availability of water in the immediate root zone during harvest which is not the case in

furrow-irrigated fields.

Table 5 shows the number of marketable (MM), non-marketable (NMM), and green

fruit for each harvest as a function of the irrigation treatment. At the beginning of the

harvest (1±4) the number of non-marketable fruit is significantly lower in the SDI

treatment than in the HFSD (Harvests 2, 3, 4) and in the LFSD (Harvests 1 and 2). On a

total basis, the number of non-marketable cantaloupes in the SDI treatment is,

respectively, 42 and 39% lower than in the HFSD and LFSD. The final yield data are

not significantly different among treatments; there is a trend favoring earliness, larger

melons and more uniform harvest in the SDI treatment, in particular with respect to the

HFSD.

2.2.2.3. Sweet corn. Sweet corn marketable weight and number of ears for all treatments

are shown in Tables 6 and 7. The marketable weight and number averaged about 95 and

J.E. Ayars et al. / Agricultural Water Management 42 (1999) 1±27 9



Table 2
Irrigation efficiency (Ei � (Et � Lr)/(Et � Dp � RO � L � S)

Irrigation

treatments

1984 (N-only) 1985 (N � P) 1987 (N � P � K)a

Ei Et (mm) Yr

(Mg haÿ1)

WUE

(kg mÿ3)

Ei Et

(mm)

Yr

(Mg haÿ1)

WUE

(kg mÿ3)

Ei Et

(mm)

Yr

(Mg haÿ1)

WUE

(kg mÿ3)

SDI 1.10 659 121ab 18a 0.97 751 168a 22a 1.07 708 220a 31a

HFSD 1.09 650 126a 19a 0.98 714 152b 20b 1.05 695 201b 29b

LFSD 1.18 690 114a 16b 0.96 724 130c 18c 1.10 709 187c 26c

Et � crop evapotranspiration, Lr � leaching requirement, Dp � deep percolation, RO � runoff, L � leaks, S � splash, yield of large red tomatoes (Yr), water use
efficiency (Yr/Et �WUE) for tomatoes grown with microirrigation at WSFS, California (from Phene et al., 1992b).
a Nitrogen � N, Phosphorus � P, and Potassium � K.
b Column means followed by similar letters are not significantly different at the 95% confidence level, as determined by the Duncan test on separation of means.

Table 3
Water applied (irrigation and rainfall, I � R), crop evapotranspiration (Et), yield of large red tomatoes (Yr) and water use efficiency (Y) Et �WUE) for tomatoes grown
with three microirrigation treatments and different fertility treatments for nitrogen (N), phosphorus (P), and potassium (K) at the West Side Field Station, Five Points, CA

Irrigation

treatments

1987 1990

I � R

(mm)

Et

(mm)

Yr

(Mg haÿ1)

WUE

(kg mÿ3)

I � R

(mm)

Et

(mm)

Yr

(Mg haÿ1)

WUE

(kg mÿ3)

P0 P1 P2 P2 N NP NPK NP

SDI 664 708 184ca 220a 215a 31a 820 895 142.5cd 182.2a 179.3a 20b

HFSD 665 695 177c 201ab 192b 29b 817 850 143.3c 155.2b 154.3bc 18

LFSD 643 709 170c 187bc 183c 26c 820 816 125.4d 157.7b 141.6cd 19

a Within each year the column and row means in the yield of red tomatoes followed by similar letters are not significantly different at the 95% confidence level, as
determined by the Duncan Test on separation of means.
b Data not available for statistical comparison.

1
0

J.E
.

A
ya

rs
et

a
l./A

g
ricu

ltu
ra

l
W

a
ter

M
a
n
a
g
em

en
t

4
2

(1
9
9
9
)

1
±
2
7



Table 4
Total number and percentages of total non-marketable yield as affected by microirrigation treatment for
cantaloupes grown at the WSFS, Five Points, CA in 1986

Treatment Non-marketable cantaloupes

Ground spots Growth cracks Rotten

Count % Count % Count %

SDI 19aa 17.6 60a 55.5 29a 26.9

HFSD 79b 42.0 50ab 26.6 59b 31.4

LFSD 72b 41.6 41a 23.7 60b 34.7

a Column treatment followed by similar letters are not significantly different at the 95% confidence level as
determined by the Duncan Test on separation of means.

Table 5
Number of marketable, non-marketable, and green fruit at each harvest for cantaloupe grown at the WSFS, Five
Points, CA in 1986

Irrigation

treatment

Pick number Count

non-ripe

melons

Total

crop

1 2 3 4 5 6 7 8 Total

SDI NMM 39a 13a 12a 8a 4a 12a 11ab 9a 108a 301 881a

MM 109a 116a 83ab 57ab 43a 24a 11a 29a 472a

HFSD NMM 53ab 29b 24b 24a 14a 9a 17a 18a 188b 275 879a

MM 64b 85a 68a 67a 52a 32a 22ab 26a 416b

LFSD NMM 76b 31b 13a 13a 4a 15a 6b 15a 173b 240 872a

MM 96ab 99a 98b 39b 58a 20a 23b 26a 459ab

a NMM is non-marketable melons, MM is marketable melons.
b Column treatments followed by similar letters are not significantly different at the 95% confidence level as
determined by the Duncan Test on the separation of means.

Table 6
Sweet corn yield from three irrigation and three phosphorus fertilization treatments (0 (P0) 67 (P1), 134 (P2)
kg P haÿ1) in 1989 at the West SFS

Marketable weight (Mg haÿ1)

Fertilizer treatments

Irrigation treatments P0 P1 P2 Means

SDIa 27.0 29.2 30.2 28.8ab

HFSD 31.3 29.6 29.4 30.1a

LFSD 27.3 29.4 29.2 28.6a

Means 28.5a 29.4a 29.6a

a Irrigation by fertilizer interaction at p < 0.5.
b Column and row means followed by the same letters are not significantly different at the 95% confidence level
as determined by the Duncan multiple range test.
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85% of the total weight and number (data not shown), respectively, harvested from the

yield sections. There were no significant differences in marketable weight between

irrigation treatments or P-fertilizer levels (Table 6). The marketable number of ears

(Table 7) showed that the SDI treatment averaged about 6% more ears than the LFSD

treatment. However, the ear number increase in SDI did not result in a significant weight

increase. HFSD was not significantly different from SDI or LFSD. There was no

significant difference between the P-fertilizer levels for marketable number of ears. The

marketable yield averaged across all irrigation and P-fertilizer treatments was

29 Mg haÿ1, 78,474 ears haÿ1, and 1635 cartons haÿ1 containing 48 ears per case.

These were all exceptional yields. Commercially produced sweet corn in the SJV

averages 1000 cartons haÿ1 and approximately 47,500 marketable ears haÿ1 of #1 corn

which has 15 cm of edible length on the cob (Anderson, 1998). The average yield across

all treatments was 65% higher than the average for commercially grown sweet corn in

California.

The distribution of roots was also studied under sweet corn as a function of drip

placement and fertilization treatment (Phene et al., 1991). Root sampling at the end of the

growing season indicated that: (1) Root extension continued in excess of 2 m in both the

surface and SDI systems at all levels of P fertilization. (2) The greatest differences

between surface and subsurface systems were observed in the top 45 cm depth. Higher

root density was observed in the surface 30 cm in the surface-microirrigated plots while

the sweet corn in the SDI plots had greater root length density than the surface

microirrigated plots below 30 cm, and (3) the greater root length density in the subsurface

irrigated sweet corn was not reflected in a similar increase in total above-ground dry

matter.

2.2.2.4. Water use efficiency. Water use efficiency (WUE) has important implications

when considering irrigation, soil and water conservation, productivity, and sustainability

of irrigated agriculture. WUE is usually defined as the ratio of dry matter yield (Y) per

unit of water evapotranspired, (E � T) for a non-water stressed crop. Phene et al. (1988b)

have shown significant increases in tomato yields with precise daily injections of

Table 7
Sweet corn yield from three irrigation and three phosphorus fertilizer treatments (0 (P0) 67 (P1), 134 (P2) kg P
ha-1) in 1989 at the WSFS

Irrigation treatment Marketable number of ears (number ha-1)

Fertilizer treatments Means

P0 P1 P2

SDIa 80,325 78,509 82,141 80,325ab

HFSD 79,618 78,810 79,818 79,415ab

LFSD 75,479 76,085 75,479 75,681b

Means 78,474a 77,810a 79,146a

a Analysis of variance F-value not significant at the 95% level.
b Column and row means followed by the same letters are not significantly different at the 95% confidence level
as determined by the Duncan multiple range test.

12 J.E. Ayars et al. / Agricultural Water Management 42 (1999) 1±27



nitrogen, phosphorus, and potassium designed to match the rates of crop uptake. These

yields were achieved without any increase in Et. SDI also improved WUE, since

evaporation from the SDI systems was minimal, transpiration (T) increased and

increasing T improved evaporative cooling of the crop canopy, increased stomatal

opening, and photosynthesis (Phene et al., 1987).

The WUE for tomatoes in 1984, 1985, and 1987 is summarized in Table 2. In 1985,

when N and P were injected and 1987, when N, P, and K were injected, all yields and

WUE increased significantly over N alone but Ets did not increase proportionally. The

yield and WUE of the SDI tomato increased significantly over HFSD and LFSD. The

WUE of the 1987 HFSD increased by 93% over that of the 1984 LFSD. These results

suggest that nearly twice as many tomatoes could be grown with the same amount of

water when SDI and precise fertigation are practised, compared to conventional irrigation

practices or with inadequately fertilized microirrigation systems.

The irrigation efficiencies (Table 2) indicate that the field systems were operated at a

slight deficit and probably without deep percolation. Eventually some extra water will

need to be applied to leach salts to maintain a salt balance in the root zone. In shallow

ground water conditions if the ground water level is lowered due to reduced deep

percolation the salt balance can be maintained without increasing the drainage outflow in

areas with subsurface drainage.

The WUE data of all the crops grown with the SDI system on the lysimeter at the

WSFS are summarized in Table 8. The WUE was calculated by dividing the total above-

ground dry matter yields by the volume of applied irrigation water. The Et represents the

full year Et measured by the lysimeter and is 52% of the reference Et. The change in soil

water content in the lysimeter indicated that a yearly net 76 mm of water was taken from

the soil profile during the 7-year period and 51 mm of water was drained below the

2.25 m depth, which is equivalent to a net leaching fraction of 0.06. Most of the drainage

occurred in conjunction with precipitation following sprinkler irrigation for crop

germination.

Part of the failure of the numbers to balance is attributed to breakdowns of the

lysimeter during the 7-year period. These results demonstrate the potential of SDI for

Table 8
Yearly values of reference and crop evapotranspiration, rainfall, irrigation, drainage, WUE for several crops
irrigated by SDI from 1984 to 1990, at WSFS, CA

Crop (year) Eto

(mm)

Crop and

soil Et

Rainfall Irrigation Drainage WUEa

(kg ÿ3)

Tomato (1984) 1823 959 104 692 0 2.2

Tomato (1985) 1720 855 127 792 59 2.41

Cantaloupe (1986) 1701 863 167 552 90 1.81

Tomato (1987) 1657 793 187 658 36 3.88

Cotton (1988) 1583 979 205 694 83 3.13

Sweet corn (1989) 1514 693 86 667 2 2.92

Tomato (1990) 1618 875 145 773 38 2.41

Means (1984±1990) 1659 860 146 689 44 2.68

a WUE calculated as the total above-ground dry matter divided by the applied irrigation water.
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increasing WUE and minimizing deep percolation with an attendant reduction in

potential pollution from nitrate and salts.

2.3. Brawley, California

2.3.1. Materials and methods

Research was conducted on the USDA-ARS Irrigated Desert Research Station near

Brawley, in the Imperial Valley of California to test the use of SDI for the production of

alfalfa (Hutmacher et al., 1992, 1996). The research plot was a 2.8 ha field with Holtville

silty clay soil on which there were five irrigation treatments and three replications. The

SDI system used lateral spacings of 1.02 and 2.04 m with the laterals being centered

under the alfalfa bed. 2 l per hour pressure compensated drippers were installed on a

1.02 m spacing along the length of the lateral. The initial lateral installation was at a

depth of 0.4 m. After 2 years of operation the original system was modified and a set of

laterals was installed at a depth of 0.6 m and used for the remainder of the project. The

original laterals were removed at this time. Trifluralin-impregnated emitters were used

for the second installation. Yields were determined using commercial-type operations for

harvest including swathing, raking, and baling. Each of the bales was weighed in the field

because of problems with wet spots in the field.

Water supply was the Colorado River which had an EC of approximately 1.15 dS mÿ1.

Water was filtered with dual sand media filters and a 200 mesh screen filter. The filters

were flushed automatically daily and manually once a week. The system was

instrumented and monitored from the Water Management Research Laboratory in

Fresno as well as on-site. A weighing lysimeter was used in a feedback mode to control

irrigation of the microirrigation system and was set to apply 1 mm of irrigation after each

1 mm of Et. The furrow plots were irrigated with gated pipe and received from 35 to

55 mm of water in each application. The total application was intended to be the same for

each irrigation method.

2.3.2. Results

In 1991 the SDI system applied 1174 mm and the furrow irrigation system applied

1310 mm of water. Rainfall is insignificant in the Imperial Valley. In 1992 the SDI system

applied 1108 mm and the furrow applied 1102 mm. The lower irrigation depth in the

furrow was due to inadequate winter and spring irrigation. In 1991, the establishment

year, the yield in the 2.04 m lateral spacing was 17% lower than the 1.04 m lateral

spacing and the furrow plot yields were 33% lower than the 1.04 m lateral drip spacing.

In 1992 the yield on the 2.04 m lateral spacing was 102% of the yield on the 1.04 m

lateral spacing and the yield on the furrow plot was 14% less than that on the 1.04 m

lateral spacing plots. The yield in 1992 for the 2.04 m lateral spacing in the SDI system

was 10 Mg haÿ1. Water extraction was monitored to a depth of 2.4 m using neutron

attenuation.

The initial installation of the drip lateral at a depth of 0.4 m was not adequate to

prevent surface wetting which created problems during the harvest. When the system was

installed at a depth of 0.7 m the surface wetting problem was eliminated and the system

could be run even during harvest.
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Results from the 94±95 studies demonstrated that the applied water and Et were within

5% for both the drip and furrow plots but the yield in the SDI plots was approximately

26±35% higher than in the furrow plots. Soil water data indicated that most of the water

use was in the upper meter of the soil profile. Increases in the WUE in this study were a

result of improved yields not reduced water application. Soil salinity data for the drip

plots indicated that a large irrigation would be required every 2±3 years for leaching and

salinity control.

One advantage of the SDI system in alfalfa production was the ability to operate the

system continuously even during harvest which reduced the stress on the plant and

provided for faster regrowth. SDI also eliminated problems associated with damage to the

crown of the plant immediately after harvest.

3. Field studies

3.1. Britz Farms

3.1.1. Materials and methods

In 1991 an SDI system was installed on five plots each 2.4 ha (60 � 396 m2) in size on

two adjacent fields (sections 1 and 36) located on Britz Farms on the west side of the SJV,

approximately 10 km south of Mendota, CA. A different type of drip tubing was installed

in each group of five plots. The tubing-types and characteristics are given in Table 9.

A lateral length of 198 m was used for the T-System, Chapin and Typhoon tubing while

a lateral length of 396 m was used for the Roberts and Ram tubing. Lateral spacings of 2

and 1.7 m were used with a depth of installation of approximately 0.45 m. The 2 m

spacing was equivalent to installing the tubing between every other row of cotton and the

1.7 m spacing corresponded to the tomato bed width at installation. The microirrigation

system operation was controlled and monitored on-site and/or remotely from the Water

Management Research Laboratory (WMRL) (Phene et al., 1992a) using a cellular phone

interfaced to the logger/controller located on site. A micrologger/controller was used to

control the irrigation valve opening and closing, to monitor the water level in an

evaporation pan and to monitor flow and pressure in each treatment.

The furrow-irrigated field was set up for graded furrow irrigation with run lengths of

396 m on a 0.1±0.2% surface slope with no provision for tailwater recovery and re-use.

Table 9
Characteristics for drip tubing used at SDI plots on Britz Farms Shallow Ground Water Management
Demonstration project

Tubing Characteristics

Ram 0.03 l minÿ1 mÿ1, 1 m emitter spacing, ID � 18 mm, 244 kPa

T-Systems 0.025 l minÿ1 mÿ1, 0.3 m emitter spacing, 15 mil tubing, 105 kPa

Chapin 0.037 l minÿ1 mÿ1, 0.3 m emitter spacing, 20 mil tubing, 105 kPa

Typhoon 0.025 l minÿ1 mÿ1, 1 m emitter spacing, 20 mil tubing, 105 kPa

Roberts 0.025 l minÿ1 mÿ1, 0.6 m emitter spacing, 10 mil tubing, 70 kPa
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The water was delivered to the furrows by gated pipe from a Westlands Water District

metered valve turnout.

Irrigation scheduling on the furrow-irrigated plots was the responsibility of the

cooperator and scheduling of the microirrigation system was the responsibility of WMRL

personnel. The automated evaporation pan located on-site was used to control the SDI

system. Pan evaporation was multiplied by a pan factor (Kpan) and a crop coefficient (Kc)

to calculate the crop evapotranspiration (Etc). This calculation was made on an hourly

basis and the Etc was accumulated until 4 mm of water was used by the crop. Irrigation

was applied a maximum of twice daily and any amount of Etc accumulated in excess of

4 mm was carried forward to the next irrigation period. The pan coefficients and crop

coefficients were developed from previous work by the WMRL. The modified crop

coefficient used for cotton was

Kc � 7:12eÿ3 ÿ 7:28eÿ4�GDD� � 3:4eÿ6�GDD�2 ÿ 2:34eÿ9�GDD�3� 3:58eÿ13�GDD�4
(1)

where GDD is growing degree days after emergence to a base of 138C (Ayars and

Hutmacher, 1994). This coefficient was derived for a water table depth of 2 m and a

ground water salinity of 7 dS mÿ1.

Cotton (var SJ-2 or MAXXA) was planted in section 1 on a 1 m row spacing in each of

the 3 years of the project on one set of five plots. The planting dates were 20 April 1991,

13 April 1992, and 14 April 1993 with germination occurring approximately a week to 10

days later. The field was pre-plant irrigated using surface irrigation during the winter and

the seed was planted in moist soil. Fertilization and cultural practices were the

responsibility of the cooperator. Fertilization was designed to meet University of

California guidelines for good cotton nutrition. Cotton yields were determined solely by

machine harvest by measuring the area required to fill a harvest module and using the lint

weight from that module and the harvested area to calculate the lint yield.

The lateral spacing of 1.7 m in the five plots in section 36 was determined by the

tomato bed size which was in place at the time of installation. The tubing was plowed into

the center of the bed at a depth of 0.45 m using a shank designed for this purpose. The

rotation on this field was tomato, cotton, and tomato.

Processing tomato (var. Apex 1000) was planted on 1.7 m beds on 11 March 1991 and

harvested on 8 August 1991. Two rows of tomatoes were planted on each bed and the drip

lateral was centered between the rows. The next crop was cotton (var. Acala Maxxa)

which was planted on beds with a 1 m spacing on 13 April 1992 and harvested on 19

October 1992. The third crop was processing tomato (var. Hunt 427) which was planted 7

March 1993 on 1.5 m wide beds. This crop was harvested 26 July 1993.

Yields were determined by both hand and machine harvest. The tomato yield was

determined by a hand harvest procedure which consisted of stripping all fruit from the

plants in a 6 m length of row and sorting by size and color and weighing each component.

Machine harvest yields were done by determining the harvest area required to fill a set of

tomato trailers and using the measured load weight to calculate the yield. Cotton yields

were determined solely by machine harvest by measuring the area required to fill a

module and using the lint weight from that module and the area to calculate a yield.
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In 1993 as a result of poor stand establishment and plant growth in the tomatoes on

section 36, an extensive soil sampling was done in the affected areas to determine if salt

accumulation was affecting plant growth and development. The soil profile was sampled

in 15 cm intervals to a depth of 0.6 m in a transect perpendicular to the drip lateral. The

sample sites extended across a full repeating pattern starting with a lateral centered on the

bed and ending with a lateral centered on a bed. The soils were dried, ground, and

saturated using standard methods (USEPA, 1979). The saturation extract was analyzed for

electrical conductivity, boron, chloride and nitrate.

Data were collected on both sections to describe the number of repairs required after

the first season and the probable cause of damage. The damage was classified as cut,

chewing, or dislocation. Cuts were generally caused by tillage equipment, chewing was

caused by gophers, and dislocation was also by tillage equipment. The damaged areas

were found by operating the system and looking for wet spots after which a hole was dug

to the damaged area and a repair made. Repairs were generally completed at the

beginning of each growing season.

3.1.2. Results

3.1.2.1. Water balance. The water balance data for cotton on section 1 of the Britz site for

1992 and 1993 are given in Tables 10 and 11, respectively. In Tables 10 and 11, the Etc

was estimated using total dry matter (TDM) (Davis, 1983). In 1992, the water applied by

Table 10
Water balance for cotton grown on the Britz Shallow Ground Water Management Demonstration Project (1992)

Irrigation

system

Soil water

depletion (mm)

Effective

Rain (mm)

Applied

water (mm)

Total dry

matter (kg/ha)

Cotton Etc

TDM (mm)

Groundwater

contribution (%)

Furrow 35 3 475 9738 437 ÿ17

Roberts ÿ7 3 300 10250 456 35

Ram ÿ7 3 377 13790 577 35

Chapin ÿ7 3 380 13143 566 33

Typhoon ÿ7 3 378 14847 613 39

T-System ÿ7 3 390 14300 534 28

Table 11
Water balance for cotton grown on the Britz Shallow Ground Water Management Demonstration Project (1993)

Irrigation

system

Seasonal Soil water

depletion (mm)

Etc CIMIS

(mm)

Etc TDM

(mm)

Groundwater

contribution (%)

Applied

water (mm)

Effective

rain (mm)

Furrow 335 0.0 14 578 645 40

Roberts 211 0.0 17 578 593 61

Ram 340 0.0 23 578 823 37

Chapin 366 0.0 24 578 750 33

Typhoon 307 0.0 20 578 657 43

T-System 292 0.0 16 578 630 47
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the furrow system was slightly greater than the crop Etc and resulted in some deep

percolation. In the drip plots high frequency irrigation coupled with modified crop

coefficient resulted in less total applied water than the furrow-irrigated plots and in a

ground water contribution to the crop water use. In 1993 both the drip and furrow-

irrigated plots were under irrigation which resulted in substantial use of shallow ground

water by the cotton crop.

Total applied water with the Roberts tubing was lower than with any of the other

systems because of the system operation. The lower pressure requirements for the Roberts

tubing were difficult to maintain and flow was periodically stopped by the pressure

reducing valve which resulted in substantial under-irrigation. The Typhoon system nearly

matched the water requirement during the irrigation season. The cumulative applied

water for the Roberts and Typhoon system is plotted in Fig. 1 along with the accumulated

Etc calculated on the base crop coefficient and the accumulated Etc based on the crop

coefficient appropriate for a water table at a depth of 2 m with an electrical conductivity

of 7 dS mÿ1.

3.1.2.2. Yield (Section 1). The cotton yield data for each of the 3 years on section 1 is

given in Table 12. The data show that the yields were improving in the drip-irrigated plots

during the 3 years of the project. The average yields for the drip plots were 1390, 1780,

and 2042 kg haÿ1 in 1991, 1992, and 1993, respectively. The yields in the furrow-

irrigated plot remained constant during this time. The cotton yields in the furrow-irrigated

plots were typical of the previous production levels on this field.

The highest yield was obtained in 1993 on the plot receiving the smallest amount of

irrigation water during the irrigation season. The furrow plot yield in 1993 was

Fig. 1. Cumulative irrigation water applied and calculated evapotranspiration for cotton at Britz Shallow

Ground Water Management Demonstration Project in 1993.
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comparable to that of 1991 in a situation with apparent under-irrigation and significant

contribution from the ground water.

3.1.2.3. Yield (Section 36). The hand-harvested tomato yields for 1991 and 1993 are given

in Table 13. All tomatoes harvested including large and small green and red tomatoes are

included in the total. The cotton yield is the machine-harvested value.

In 1993 the hand-harvested yields were taken from areas which were not affected by

poor germination and growth. The machine yields were generally lower than the hand-

harvested yield. The hand harvest was selected for comparison to be consistent across

years. Also we do not have machine harvest on all plots in 1991. There was little

difference in hand-harvested tomato yields between 1991 and 1993. These yields

compare to hand-harvested yields of 109 (1991) and 103 Mg haÿ1 (1993) from a furrow-

irrigated area adjacent to the drip plots. The cotton yield data compare to yield in the

range of 676±2177 kg haÿ1 for furrow-irrigated plots.

Both the drip and furrow-irrigated plots are located in a field containing perched

groundwater at a depth of 1.5 m with an electrical conductivity of 3±5 dS mÿ1. This water

was available to both crops during the season and might supplement the water provided

by the microirrigation system and reduce the impact of poor lateral placement relative to

the crop in 1992 and 1993. This was particularly true for cotton which is a tap-rooted crop

and has been shown to use water extensively from shallow groundwater.

Table 12
Yield of cotton grown using SDI on the Britz Shallow Ground Water Management Demonstration Project in
1991±1993

Irrigation systema 1991 1992 1993

(Mg haÿ1) (Mg haÿ1) (Mg haÿ1)

Roberts 1.4 1.6 2.3

Ram 1.3 1.7 1.9

Chapin 1.5 1.8 2.6

Typhoon 1.3 1.9 1.7

T-Systems 1.4 1.9 1.7

Furrow 1.5 1.4 1.5

a Product names are given for the benefit of the reader and do not imply endorsement by the USDA-ARS.

Table 13
Summary of hand-harvested tomato yield (1991, 1993) and machine-harvested cotton yield (1992) section 36 of
Britz Shallow Ground Water Management Demonstration Project

System 1991 Tomato

(Mg haÿ1)

1992 Cotton

(kg haÿ1)

1993 Tomato

(Mg haÿ1)

Typhoon 131 1910 146

T-System 131 2100 125

Chapin 136 2160 136

Ram 127 2140 117

Roberts 125 2140 110
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3.1.2.4. Soil water and chloride distribution. The position of the drip tubing relative to

the bed placement in section 36 for 1991±1993 is shown in Fig. 2. In 1991 the drip lateral

was centered on 1.67 m wide beds which were used as guides in the installation process.

In 1992, the farmer opted to use a row spacing of 1 m for cotton which was not

compatible with the existing lateral spacing. If the cotton was planted on approximately

0.76 m spacing the lateral would have been placed roughly between every other cotton

row which was the desired configuration. In 1993 the tomato crop was grown in a 1.5 m

wide bed.

In 1993 the placement of the laterals relative to the bed became critical since only a

single row of tomatoes was planted on each bed and the best location for the lateral would

be directly under the row. As seen in Fig. 2, after six beds the lateral was under the furrow

and not under the bed. There was the potential when the lateral was under the furrow that

salts in the soil water were transported under the row instead of away from the row.

The soil water data in Fig. 3 show the distribution in the top 0.45 m of the soil for the

microirrigation system cross-section and for a comparable cross-section in furrow-

irrigated plots. The data show that the top 0.15 m in the microirrigation system is drier

than the comparable zone in the furrow system. There is also more separation between the

next two depths in the microirrigation system than is found in the furrow system. Recall

that the drip laterals were installed a depth of 0.45 m. There appeared to be a pattern of

the highest soil water content being found under the drip laterals which means that it is

not centered under the crop row by the end of the repeating pattern. Hanson and Bendixen

Fig. 2. Sub-surface drip irrigation lateral position relative to beds and resulting soil water and chloride

distributions at 30±45 cm depth under tomato beds at Britz Shallow Ground Water Management Demonstration

Project in 1993.
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Fig. 3. Soil water content at depths of 0±15, 15±30, and 30±45 cm under (a) sub-surface drip irrigation and (b)

furrow irrigation of tomato crop at Britz Shallow Ground Water Management Demonstration Project in 1993.
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(1995) found that the area around and below a drip tape installed at a depth of 0.13 m in

both clay loam and fine sand was leached and salt accumulated away from the tape to the

edge of a bed.

3.1.2.5. Physical damage. We observed that the laterals were subject to more damage

when the lateral was not placed directly under the bed. The type of damage and the

number of repairs are summarized in Table 14 for 1992±1993.

Much of the cutting and dislocation of the tubing was done on each end of a lateral

where the tubing was not at a depth of 0.45 m. The tubing with the smallest wall

thickness was subject to extensive damage by chewing and cutting. There were more cuts

on tubes with the shorter laterals because the tube was brought to the surface mid-way in

the field during installation to connect it to a sub-main. In areas where the tubing was not

centered under the bed several hundred feet of tubing had to be re-installed in 1993

because it was brought to the surface during bed preparation. Some of the damage which

is located at the end of the laterals can be minimized by changing the installation

procedure but this is not the case when the bed configuration relative to the lateral is not

correct. Steele et al. (1996) found extensive mechanical and rodent damage to drip tape

installed at a depth of 0.28 m on a sandy loam soil. Chase (1985) found extensive damage

to thin wall tubing installed at 0.08 m depth due to planting and weeding operations as

well as fire ants and purple nutsedge rhizomes.

4. Uniformity studies

In irrigated agriculture, the preservation of water quality is dependent on the ability of

the irrigation system to uniformly distribute water, chemicals, and fertilizers in time and

space to the crop being grown. Drip irrigation and more specifically SDI systems can

potentially achieve high application uniformity and can be operated to provide a high

application efficiency (Phene et al., 1987). Evaluation of emitter discharge uniformity is

necessary to determine if water and fertilizers are supplied to crops uniformly.

4.1. Materials and methods

The uniformity parameters chosen to evaluate microirrigation system application

uniformity are: the Uniformity Coefficient (UC); the emitter flow variation (qvar); and the

Table 14
Summary of damage and number of repairs to tubing in the SDI systems in 1992 and 1993 on the Britz Shallow
Ground Water Management Demonstration Project

Damage Typhoon T-system Chapin Ram Roberts

1992 1993 1992 1993 1992 1993 1992 1993 1992 1993

Cut 23 10 8 13 23 13 8 3 10 2

Chewing 16 16 8 14 8 7 3 2 19 12

Disloc. 4 6 1 8 5 0 2 0 4 2
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Coefficient of Variation (CV) of emitter flow (Christiansen, 1942; Wu et al., 1979). The

emitter flow variation is a measure of the variation of emitter discharge rate in a sub-main

unit. These uniformity parameters are mainly affected by hydraulics (Wu et al., 1979),

manufacturer variation (Bralts et al., 1981b) plugging (Bralts et al., 1981a, 1982), and

temperature (Peng et al., 1984; Wu and Phene, 1984). The determination of UC, CV, and

qvar can be obtained from field tests using an 18-point method (Bralts and Kesner, 1983;

ASAE, 1989).

Field testing was done on five plots located in section 1 of the Britz experimental site

after 2 years of operation and on plots at the WSFS which had been in operation for 9

years. All plots were randomly checked using the 18 points method described as follows.

A tested unit consisted of an entire sub-main unit, which was divided into 18 sub-units,

with an emitter being randomly selected in each of the 18 sub-units for testing. After

leaks due to insect, gopher, and machine damage were repaired and the system was

flushed thoroughly, the soil was excavated from around the emitter to be tested. The

emitter discharge was carefully measured for 3 min at the required operating pressure and

the flow rate was calculated by dividing the mean flow by the time of collection. The

uniformity parameters were calculated individually for each plot using the 18 tested

emitters.

4.2. Results

4.2.1. Britz system

The UCs of the five SDI fields in Section 1 at the Britz site were similar to

measurements of UC, CV, and qvar made above ground before the tubing was installed.

The UCs for the Typhoon and Ram systems were 96.97 and 95.47, respectively. The UCs

for the remaining systems were 93.57 for the T-Tape, 76.34 for the Roberts, and 91.50 for

the Chapin. The CV for these products after 2 years of use was 3.94 and 5.78% for the

Typhoon and Ram, respectively, 9.11% for the T-Tape, 34.49% for the Roberts and

10.42% for the Chapin. The qvar for each of the products was 14.04 for the Typhoon,

18.69 for the Ram, 34.2 for T-Tape, 100 for Roberts, and 31.35 for the Chapin. It should

be noted that the Roberts tape in use during this project was an experimental product

made available for this project and is not commercially produced. The large CV and qvar

of the Roberts product was a result of many leaks and pressure loss from damage to the

tape from burrowing animals.

4.2.2. WSFS System

The experimental plots at the WSFS which had been in operation for 9 years were also

tested using 18-point method. Three phosphoric acid sub-treatments (P0, P1, P2) were

tested using the procedures described in the previous section; in these sub-treatments, P0,

P1, and P2 refer, respectively, to no phosphoric acid injected, injecting phosphoric acid at

15 and 30 mg kgÿ1 P. The hypothesis was that phosphoric acid could prevent root

intrusion and precipitation of chemicals.

Each sub-main unit tested consisted of three laterals, 91 m long (P1 and P2) or four

laterals (P0). The tested unit consisted of an entire sub-main unit which was divided into

18 sub-units with one emitter being randomly selected for testing in each sub-unit
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(random 18-point field test method). Leaks due to gopher or machine damage were

repaired and the system was flushed thoroughly. In 1989 after 5 years of operation, nearly

half of the drip laterals in the P0 treatment were replaced due to root intrusion and/or

plugging, and these laterals were excluded from this test. One emitter was located,

operating pressure was set, the flow was measured for 3 min and the flow rate was

calculated by dividing the mean flow by the time. The UC, CV, and qvar were calculated

for each unit using the randomly selected emitters.

Results indicated that, except in Plot 11, sub-treatments P0, P1, and P2 where 5% of the

emitters in these plots were plugged, the UCs were above 95%, and the CVs were less

than 5% and the qvar was between 10 and 25%. The cause of one emitter plugging in each

sub-plot in Plot 11 could not be determined. These results demonstrate that the SDI

systems performed very well after 9 years of operation. The injection of phosphoric acid

may be helpful in controlling root intrusion and/or chemical precipitation since nearly

half the laterals in the P0 plots had to be replaced after 5 years of operation. However,

from 1989 to 1992 there did not appear to be any significant difference in plugging

between the rest of the original P0 laterals and the P1 and P2 sub-treatments.

5. Discussion

Results from the studies presented in the previous sections address several areas of

concern and provide partial answers to questions raised at the beginning of the

manuscript. The depth of placement is one issue that still requires research but there are

several findings which are relevant to the application of SDI without the complete answer

being available for the depth of placement. In the research presented in the paper a depth

of 45 cm was routinely used for the lateral depth placement and was very successful for

several reasons. The soils in most of the installations were silty clay loam to clay loam

soils which have the capability of moving water long distances from the drip emitter. In

each case the SDI system was not used for germination of the crop. This was done with a

second irrigation system, which is a practice that is quite common in SJV. Tomatoes are

generally planted and irrigated with sprinklers for germination and after stand

establishment furrow irrigation is used. Another practice which enables the use of SDI

is pre-plant irrigation. Pre-plant irrigation is the application of water to a fallow field for

purposes of leaching any accumulated salt and for refilling the root zone. In this situation

cotton can be planted and germinated without any further irrigation. There is enough root

development in the soil to permit the use of the SDI system when it is time to begin

irrigation.

In sandy or `lighter' soils the depth of installation has to be reduced to shorten the

distance water has to move from the emitter to the root system. When the drip installation

is not permanent the depth of installation tends to be very shallow <10 cm, which is

common in irrigation of strawberries in California. Also, if the SDI system is going to be

used for germination, then the depth of placement has to be reduced to minimize the

distance to the surface and thus reduce deep percolation losses.

A depth of installation of 0.3 m has been used by Howell et al. (1997) and Lamm et al.

(1995) in the production of corn on clay loam and loam soils. Camp et al. (1997) used a
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0.3 m depth of placement for supplemental irrigation of cotton grown in the southeastern

United States. Based on the results from a pot study, Plaut et al. (1996) recommended an

installation depth from 0.4 to 0.5 m for cotton. Their results indicated that cotton roots

would grow through dry soil to moisture at deeper depths.

Bed placement in relation to the drip tube is a critical consideration. Placement of drip

laterals between every other row of cotton and centered between tomato and corn rows

proved to be very effective and minimized the cost of installation. However, this dictates

the row spacing for all succeeding crops. Lateral spacing has to be a multiple of the row

spacing which will be used. When this was not followed for the tomato crop at the Britz

site there was significant damage done to the microirrigation system, and adverse impacts

on the yield. Alternate row spacing for lateral placement has been used by Howell et al.

(1997) and Lamm et al. (1995) in the production of corn without any adverse impacts on

yield. Camp et al. (1997) used alternate row spacing successfully with cotton. Tollefson

(1985) reported on the Arizona System which installed drip tape at a depth of 0.25 m

under every row of cotton on a 1 m spacing. This system was effective in meeting the

peak Et demands of cotton and in pushing salt to the edge of the bed.

The useful life of the system is a critical issue as is the uniformity of the system after a

period of time. The uniformity results at the Britz site demonstrated that both hard hoses

and tapes were suitable for use in SDI systems and that uniformity was good with either

type of product. After 10 years of use at the WSFS the drip tubing was in excellent

condition with good uniformity with the exception of one plot which had not been

routinely irrigated with water containing phosphoric acid. Anecdotal evidence from the

WSFS studies is that continuous injection of phosphoric acid at a concentration of

15 mg lÿ1 is adequate for prevention of root intrusion. Howell et al. (1997) have

successfully used phosphoric acid at a concentration of 13 mg lÿ1 to prevent root

intrusion. New drip products with Trifluralin impregnated emitters also have the potential

to prevent root intrusion. One area of concern was the physical damage done to the tubing

by rodents. This was more extensive in the tape products than the hard hose products.

Improvement in yield is one of the most touted reasons for switching to drip as is

reduction in applied water. Dramatic increases were found in yields of tomatoes, corn,

and cantaloupes. Some improvements were found in the yield of cotton. The maximum

increases were a result of both improved water management and improved fertilizer

management which was possible with a microirrigation system and with high frequency

irrigation. WUE of individual crops was improved as a result of increased yield without

increased water application. Any reductions in applied water were a result of switching

from inefficient irrigation systems or management of the SDI system so that the crop used

an alternative water source such as shallow ground water. Lamm et al. (1995) found that

SDI reduced the non-beneficial use of water and maintained corn yield with 20% less

applied water. Howell et al. (1997) did not measure significant yield increases with SDI

provided adequate water was available in the soil profile from pre-plant irrigation and

rainfall. Camp et al. (1997) found that cotton yields increased in 2 of 4 years in a humid

area.

The issue of irrigation frequency is one that has not been fully resolved. The plots at

the WSFS were irrigated up to eight times per day when controlled by a weighing

lysimeter, while the plots at the Britz site were irrigated up to twice a day during the peak
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Et demand period based on pan evaporation and a crop coefficient. There is an interaction

between the soil-type and the irrigation frequency which needs to be further studied to

determine the movement of water away from the emitter. If excessive water is applied

during an irrigation event using SDI there is the potential for deep percolation losses

particularly if the soil is sandy. Caldwell et al. (1994) found that the highest irrigation

WUE on subsurface drip-irrigated corn occurred as the irrigation interval was extended

from 1 to 7 days. This also resulted in reduced deep percolation losses. They attributed

this response in part to the use of rainfall by the crop. Crop yield WUE was not affected

by irrigation frequency, which was also the case for Howell et al. (1997).
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